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Abstract

This paper deals with a theoretical analysis of extensional fissures around spherical rigid inclusions hosted in a ductile matrix undergoing

bulk shear. The analysis shows that the mechanical interaction of inclusions is a function of the inclusion concentration a/b (2a and 2b are the

inclusion diameter and mean inter-inclusion distance, respectively), and intensifies the tensile stress imparted by the flowing matrix on the

inclusion–matrix interface. Inclusion concentration a/b thus appears to be a crucial parameter in perturbing the inclusion–matrix coherence

and leading to formation of extensional fissures around an inclusion. We performed numerical simulations to delineate the fields for coherent

and incoherent interfaces in the Tp
o 2 a=b space, where Tp

o is the tensile strength of the interface, normalized to h _g, where h and _g are the

viscosity of matrix and bulk shear rate, respectively. For a given a/b, the interface cannot remain coherent unless the tensile strength is greater

than a critical value. The critical Tp
o increases almost linearly at a gentle gradient with increasing a/b. However, for a/b . 0.7, this increases

nonlinearly, assuming a large value when the concentration is high (a/b . 0.8). It is also revealed that under the same deformation

conditions, the instantaneous opening in fissures may vary depending upon the a/b values.
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1. Introduction

Many rocks contain stiff inclusions (e.g. porphyroclasts,

porphyroblasts, etc.) floating in a ductile matrix. During

deformation, the inclusions mechanically interact with one

another when they occur in large volume proportions in the

rock. Theoretical and experimental studies demonstrate that

such mutual interaction affects the rotational kinematics of

inclusions, the matrix flow around them (Shimammoto,

1975; Ildefonse et al., 1992; Treagus, 2002; Samanta et al.,

2003), and their internal strain when they are deformable

(Mandal et al., 2003). It appears from these studies that

traction at inclusion–matrix interfaces will depend upon the

interaction, which is a function of inclusion concentration.

In this paper we investigate how the mechanical interaction

among rigid inclusions modifies the traction at the

inclusion–matrix interface and, in turn, may affect the

coherence between inclusion and matrix, which is a crucial

physical condition considered in different analyses on

inclusion–matrix rock systems (Ildefonse and Mancktelow,

1993; Marques and Cobbold, 1995; Kenkmann and Dresen,

1998; Pennacchioni et al., 2000; Ramsay and Lisle, 2000;

Marques and Coelho, 2001; Mancktelow et al., 2002).

Observations on naturally deformed inclusion–matrix

rock systems indicate that the inclusion–matrix coherence

may be locally affected, and there may be detachment of

matrix from the inclusion, forming fissures on either side of

the inclusions (Ramsay and Huber, 1983). These fissures are

generally filled with crystal fibers. Their growth patterns,

e.g. face controlled and displacement controlled, are guided

by the detachment kinematics (Ramsay and Huber, 1983;

Urai et al., 1991). In order to study the mechanics of these

extensional fissures, it is primarily necessary to understand

the physical factors that trigger coherence to incoherence

transition at the inclusion–matrix interface. Recent studies

reveal that the shape and orientation of the inclusion control

the detachment at the inclusion–matrix interfaces (Samanta
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and Bhattacharyya, 2003). The analyses, however, deal with

single rigid inclusions floating in an infinite ductile matrix,

and are thus applicable to rocks containing inclusions in low

volume concentrations. Interacting inclusions experience

matrix-traction different from that of single, non-interacting

inclusions (Samanta et al., 2003), and the conditions for

inclusion–matrix detachment in such cases are different,

calling for a separate analysis.

In this paper we present a theoretical analysis to

show the effect of mechanical interaction on the

stability of inclusion–matrix interfaces in a system of

rigid spherical inclusions in a viscous matrix, and

demonstrate how the inclusion concentration can

influence the formation of extensional fissures at the

inclusion–matrix interface in bulk simple shear defor-

mation. This analysis involves the velocity functions for

flow outside an interacting spherical inclusion in a

viscous matrix (Happel, 1957; Samanta et al., 2003).

Theoretical results are complemented with findings from

physical model experiments.

2. Theoretical consideration

2.1. Mathematical derivations

Consider a coherent inclusion–matrix system consisting

of rigid spherical inclusions of diameter 2a with a mean

inter-inclusion distance 2b within a Newtonian viscous

matrix (Fig. 1a). The system is deformed under bulk simple

shear at a rate _g. A Cartesian reference, xyz, is chosen at the

center of an inclusion with x axis oriented parallel to the

shear direction and z axis oriented along the direction of no

bulk flow (Fig. 1b). The bulk shear _g can be resolved into

distortion (exy) and rotation (z) parts, where exy ¼ _g=2 and

z ¼ _g=2. For a homogeneous flow, i.e. in the absence of

inclusions, the velocity components corresponding to exy

and z can be written in terms of the Cartesian coordinates,

respectively, as:

up
D ¼

_g

2
y; vpD ¼

_g

2
x; wp

D ¼ 0 ð1aÞ

up
R ¼

_g

2
y; vpR ¼ 2

_g

2
x; wp

R ¼ 0 ð1bÞ

The flow perturbations due to the presence of inclusions

need to be determined separately for distortion (exy) and

rotation (z) parts, which can be combined with Eqs. (1a) and

(1b) to obtain the entire flow field around an inclusion.

Using Lamb’s (1932) theory of spherical harmonics for

hydrodynamics, Happel (1957) presented flow perturbations

around an inclusion as a function of inter-inclusion spacing

for the distortion part exy of bulk shear. Their expressions in

spherical coordinates follow:

vr ¼ 6r3A þ 2rB þ
6

r2
C 2

3D

r4

� �
_gcosfsinucosu

vu ¼ 5r3A þ rB þ
D

r4

� �
_gcosfðcos2u2 sin2uÞ

vf ¼ 2 5r3A þ rB þ
D

r4

� �
_gsinfcosu

ð2Þ

vr, vu and vf are the velocity components in the direction of

positive r, u and f, respectively (Fig. 1b). Samanta et al.

(2003) have considered mutual rotational interaction among

rigid inclusions in the system, and derived the flow

perturbation around a rigid inclusion corresponding to the

rotational part z. This perturbation is added to that in Eq. (2),

and then taking Eqs. (1a) and (1b) in spherical coordinates,

Fig. 1. (a) Consideration of inclusion–matrix system for theoretical

analysis. (b) Choice of spherical co-ordinate frame at the center of an

inclusion.
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the total flow field can be expressed as:

vr ¼

"
6r3A þ 2rB þ

6

r2
C 2

3D

r4
þ r

#
_gcosfsinucosu

vu ¼

" 
5r3A þ rB þ

D

r4
þ

r

2

! 
cos2u2 sin2u

!

2
1

2

 
r 2

a6

b3r2

!#
_gcosf

vf ¼ 2

"
5r3A þ rB þ

D

r4
þ

1

2

a6

b3r2

#
_gsinfcosu ð3Þ

where A, B, C and D are constants, and their expressions are:

A ¼ 2
5

2a2

a7

10 þ 4a7

 !
b;

B ¼
5

4

4 þ 10a7

10 þ 4a7

 !
b2

1

2
; C ¼ 2

5a3

12
b;

D ¼ 2
5a5

10 þ 4a7
b

ð4Þ

where

b ¼
10 þ 4a7

10 1 2 a10
� �

2 25a3 1 2 a4
� �

and a ¼ a=b.

The constants are functions of the a/b ratio (Eq. (4)),

which can be considered as a measure of volume

concentration of rigid inclusions in the system. The ratio

may vary from zero to one, representing, respectively, a

very dilute suspension, comparable with single inclusion

systems and an extremely dense suspension, where the

inclusions are in contact with one another.

With the help of the velocity functions in Eq. (3) we can

now determine the stress at any point in the flowing matrix.

In spherical coordinates the relations between the stress and

the velocity gradient tensors are:

sru ¼ h
1

r

›vr

›u
þ

›vu
›r

2
vu
r

� �
;

srf ¼ h
1

rsinu

›vr

›f
þ

›vf

›r
2

vf

r

� �
;

suf ¼ h
sinu

r

›

›u

vf

sinu

� �
þ

1

rsinu

›vu
›f

� �
;

and

srr ¼ 2p þ 2h
›vr

›r

� �
;

suu ¼ 2p þ 2h
1

r

›vu
›u

þ
vr

r

� �� �
;

sff ¼ 2p þ 2h
1

rsinu

›vf

›f
þ

vr

r
þ

vucotu

r

� �� � ð5Þ

where p and h are the confining pressure and the viscosity of

matrix, respectively. After Happel (1957) we find the

expression of p:

p ¼ h 42r2A þ 12
C

r3

� �
cosfsinucosu ð6Þ

Substituting the expressions of vr, vu, vf (Eq. (3)) and p

(Eq. (6)) in Eq. (5), we get:

srr ¼ ð26r2A þ 4B 2 36
C

r3
þ 24

D

r5
þ 2Þh _gcosfsinucosu

suu ¼ 270r2A 2 4B 2 14
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D
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2.2. Analysis of stress at the inclusion–matrix interface

Using Eq. (7), we can determine the traction at different

points on the inclusion–matrix interfaces considering the

effect of inclusion concentration. We performed the analysis

on a two-dimensional section perpendicular to the direction

of no bulk flow (i.e. z axis), passing through the center of the

inclusion. After substituting r ¼ a in Eq. (5), the normal and

shear components of the traction can be shown as a function

of u for a given value of the a/b ratio (Figs. 2 and 3). For

convenience, the radial and tangential stress components are

normalized as:

sp
rr ¼

srr

h _g

and

sp
ru ¼

sru

h _g

We then analyze their variations along the inclusion–

matrix interface (i.e. with u). The normal stress is tensile in

the range of 0 . u , 908, with a peak at u ¼ 458 (Fig. 2).

The maximum value of the tensile stress is sensitive to the a/

b ratio. This is less than 25 when a/b is less than 0.6.

However, the stress exceeds 100 when a/b is greater than

0.8. This implies that the mutual mechanical interaction

resulting from larger concentrations of inclusions in the

system leads to stress intensification at the inclusion–matrix
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interfaces. Similarly, the shear stress component, normal-

ized to the bulk flow stress, varies systematically with u, and

the variation also depends on the a/b ratio (Fig. 3). For a

given a/b value, the shear stress is a maximum at u ¼ 0, and

then decreases down to zero at u ¼ 458, and the sense of

shear stress reverses with further increase in u, showing a

minimum at u ¼ 908. It is found from the plots that the

inclusion concentration, i.e. a/b ratio, has a greater effect in

intensifying the normal stress component, relative to the

shear stress component. When the a/b ratio is 0.8, the

maximum value of normalized tensile stresses becomes

more than 100, whereas that of normalized shear stresses

remains less than 50.

In response to the traction, the inclusion–matrix inter-

face may experience extensional detachment at places

where the tensile stress exceeds the tensile strength of the

interface. Since increasing inclusion concentration appears

to intensify the normal traction, this may be an important

parameter facilitating development of extensional fissures

around inclusions in a multiple inclusion system, as

revealed in the numerical simulations presented below.

2.3. Numerical simulations of extensional fissures

A computer program was developed in Visual Basic to

compute the tensile stress component acting on the surface

of the inclusion, and to find points on the inclusion where

the tensile stress exceeds the tensile strength (To) of the

inclusion–matrix interface The strength was normalized to

h _g, which is denoted hereafter as Tp
o . Instantaneous

 

 

 

Fig. 2. Calculated plots showing variations of the normalized tensile stress sp
rr (¼ srr=h _g) at the inclusion–matrix interface with u for different inclusion

concentrations (a/b).

 

 

Fig. 3. Variations of shear stresses sp
ru (¼ sru=h _g) at the inclusion–matrix

interface for different inclusion concentrations (a/b).
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displacements of these points following detachment were

then computed to delineate the fissure, considering a direct

proportionality between displacement and normal traction

(cf. Samanta and Bhattacharyya, 2003; also see discussion).

Using Eq. (7) we performed a set of numerical experiments

by varying the inclusion concentration parameter a/b (Fig.

4). Numerical models reveal that for the imposed value of

tensile strength (Tp
o ¼ 1) inclusions do not develop

perceptible fissures at their interface with the matrix,

when a/b is less than 0.5. For the same tensile strength,

when the ratio is larger than 0.6, detachment occurs at the

inclusion–matrix interface giving rise to symmetrical

fissures on either side of the inclusion with maximum

opening oriented at an angle of 458 with the shear direction.

The magnitude of maximum opening is also found to be

sensitive to the a/b ratio, and increases steeply when a/b is

larger than 0.7. With increase in a/b, detachment occurs

over large arc-lengths of the inclusion–matrix interface.

However, fissure opening normal to the wall is much more

sensitive to the a/b ratio, compared with its lateral

increment.

2.4. Stability field of inclusion–matrix interface

The stability of inclusion–matrix interfaces will depend

on two factors: inherent tensile strength of the interface and

stress resulting from the flowing matrix in an interacting

state In the previous section we have seen that the stress is a

function of inclusion concentration. Thus, the fields defining

the conditions for coherent and incoherent interfaces can be

shown in terms of its normalized tensile strength Tp
o and

inclusion concentration (a/b) (Fig. 5). For a given Tp
o , the a/b

ratio shows a critical value where the maximum tensile

stress at the interface tends to exceed the tensile strength and

thereby the coherent interface becomes incoherent. For

example, if Tp
o ¼ 10, the interface will become incoherent,

developing fissures when a/b exceeds 0.72 (Fig. 5).

With the help of Eq. (5) we calculated the critical tensile

strength (Tp
o ), i.e. the strength required for maintaining

interfaces intact, as a function of inclusion concentration (a/

b), and defined the fields for inclusions with coherent and

incoherent interfaces. The plot (Fig. 5) shows that the

critical To varies more or less linearly at a gentle gradient

with the a/b ratio when a/b , 0.7, defining a narrow field

for the formation of extensional fissures. For very low

inclusion concentrations (a/b , 0.1) fissures can develop

only when the normalized tensile strength of the interface is

less than 2.5. With increase in inclusion concentration this

increases to about 10 when a/b ¼ 0.7. For larger a/b, the

critical Tp
o increases nonlinearly with a/b, assuming a steep

gradient when a/b . 0.8. Thus, the field for inclusions with

incoherent interfaces widens with a/b, and the tensile

strength required for maintaining a coherent interface

becomes very large (Fig. 5). The analysis implies that

increasing inclusion concentration promotes formation of

extensional fissures in inclusion–matrix systems.

3. Experimental verification

We carried out a set of simple, analog experiments to test

the analytical results described in the previous sections.

Interacting inclusion–matrix systems were simulated by

embedding a number of short, circular cylindrical rigid

objects within a block of commercial putty (viscosity in the

order of 104 Pa s) (Fig. 6). There was an isolated object in

the putty block, which behaved as a single object in the

matrix. The model was deformed in simple shear at a rate of

1.5 £ 1023/s. A set of experiments was run by varying the

concentration of objects, i.e. the a/b ratio.

In all the experiments the isolated objects maintained a

coherent interface with the matrix, and thus did not produce

fissures at any stage of progressive shear deformation. On

the other hand, the interfaces of objects occurring in

multiple associations showed contrasting responses,

depending upon their concentration in the matrix (Fig. 7).

In experiments with a low object concentration the object–

matrix interfaces remained coherent, as in the isolated

object (Fig. 7a). Under the same strain, whereas the isolated

object had an intact interface, multiple objects in larger

concentrations showed incoherent interface, developing

Fig. 4. Numerical simulations of instantaneous extensional fissures adjacent

to circular inclusions under bulk simple shear. Note that the degree of

opening increases with increasing inclusion concentration a/b.
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fissures on either side of each object (Fig. 7b). The opening

of fissures was found to be a function of the concentration of

objects in the model, as revealed from the numerical

simulations (Fig. 4). With increase in object concentration

the detachment occurred rapidly, forming fissures with large

opening for the same amount of bulk shear (Fig. 7b and c).

The experimental findings reveal two principal facts: (1)

the mechanical stability of inclusion–matrix interface

decreases, resulting in coherence to incoherence transition

with increasing inclusion concentration and (2) the

magnitude of opening of fissure is larger for larger inclusion

concentration in the matrix.

4. Discussion

Our study primarily aims at analyzing the role of

inclusion concentration on inclusion–matrix coherence, a

crucial physical factor in rock composites, such as

conglomerates, mylonites and augen gneisses. We consider

some examples to discuss its geological implications. In

many metamorphic rocks large, rigid mineral grains are

associated with crystal fibers, which are found to be useful

kinematic indicators (Ramsay and Huber, 1983). The most

fundamental step in explaining these structures needs an

understanding of the conditions triggering detachment of

the matrix from mineral grains. Our analysis suggests that

rigid grains occurring in high concentration are more likely

to develop fissure-controlled fibers, as their interfaces are

prone to extensional detachment. The degree of inclusion–

matrix coherence again affects the strain field around rigid

inclusions (Ildefonse and Mancktelow, 1993; Pennacchioni

et al., 2000). It appears from this analysis that increasing

inclusion concentration facilitates inclusion–matrix detach-

ment, and thereby can modify the heterogeneous strain

distribution around the inclusion. Thus, under the same bulk

 

 

Fig. 5. Fields for inclusions with coherent and incoherent interfaces in Tp
o 2 a=b space. Tp

o is the tensile strength of interface normalized to h _g. Dashed lines

show an example of critical a/b corresponding to a given tensile strength. For Tp
o ¼ 10, a coherent interface will become incoherent if a/b . 0.71.

 

 

 

Fig. 6. A schematic sketch of the experimental setup. The model consisted of rigid inclusions floating in a ductile matrix of commercial putty.
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kinematics structures, e.g. foliation drag, porphyroclast

tails, developing under the influence of heterogeneous strain

field around large grains may be different in different locales

depending on the variation in their initial concentration in

the rock.

The analysis shows that the magnitude of tensile stress at

the inclusion–matrix interface increases non-linearly with

increasing inclusion concentration (Fig. 2), and assumes a

large value when the concentration is greater than 0.8. Thus,

inclusions occurring in high concentrations can undergo

detachment from the matrix over a large area of their

interface if the cohesional strength is not high. In such a

condition fissures can form encompassing almost the entire

portion of the inclusion–matrix interface lying in the

extensional field. This type of extensional fissures is

sometimes observed around stiff objects, e.g. ooids, in

naturally deformed rocks (cf. figs. 7.7 and 7.8 of Ramsay

and Huber, 1983).

We ran numerical simulations based on several con-

siderations, which need to be addressed. Numerical models

are idealized with statistically random distribution of

spherical rigid inclusions, where the boundary conditions

defining the inter-inclusion interaction are imposed on the

surface of a co-centric spherical shell with the radius equal

to the mean inter-inclusion distance. It is assumed that the

same interaction condition prevails over the entire surface

of the shell, where the positional distributions of the

neighboring inclusions are not taken into account. Under

this consideration the direction of maximum tensile stress is

always oriented at an angle of 458 to the shear direction,

irrespective of volume concentration. This is evidently a

statistical orientation, and agrees with our findings in

physical experiments. However, there may be departures

due to variation in the distance of neighboring inclusions.

For example, the direction of maximum tensile stress may

get tilted towards a neighboring inclusion located very close

to the inclusion under consideration. Considering random

dispositions of the neighboring inclusions, the average

orientation of maximum tensile stress should be at an angle

of 458 to the shear direction, as revealed from the theoretical

analysis.

The mathematical derivations in the theoretical analysis

are applicable for small amounts of deformation, i.e. as long

as the boundary conditions on the spherical shell remain

valid. Again, the derivation of stresses at the inclusion–

matrix interface involves velocity functions for flow of

Fig. 7. Initial (left) and deformed (right) physical models. The models were deformed to about the same amount of bulk shear (g ¼ 0.18). Note that the isolated

inclusions did not develop detachment in any of the experiments. a/b ¼ 0.4, 0.5 and 0.7 in (a), (b) and (c), respectively. Scale: inclusion diameter ¼ 1 cm.

N. Mandal et al. / Journal of Structural Geology 26 (2004) 1773–1781 1779



matrix, which is based on coherent condition of inclusion

and matrix. The functions will not remain valid as soon as

incoherence develops at the inclusion–matrix interface. In

the numerical simulations we have shown fissures develop-

ing at the instant of coherent to incoherent transition. They

actually represent varying rates of opening due to varying

inclusion concentrations. Evidently, the theoretical

approach is not tenable to decipher the progressive

development of fissures in the course of deformation. The

simulations involve exaggeration of the magnitude of

instantaneous opening and demonstrate how increasing

volume concentration promotes fissure generation. The

magnitude of opening at the moment of detachment is

assumed to be directly proportional to the tensile stress

acting at the inclusion–matrix interface. This is a somewhat

simplistic assumption, which we can correlate with that

obtained analytically from the plane theory of elasticity. The

analytical solutions (eqs. 58.9 and 58.10 of Muskhelishvilli,

1953) show that the displacement components at the

interface of the incoherent circular rigid object are linear

functions of the stress components at that point. In our

numerical simulations we have chosen the proportionality

factor arbitrarily in such a manner that the differences in

fissure opening due to varying inclusion concentrations

become obvious. It is likely that fissure geometry shown in

the numerical models will undergo modifications with

progressive deformation, as their boundary will sub-

sequently get distorted in response to the heterogeneous

strain field around the inclusion. The finite opening of

fissures will also depend on the displacement of neighboring

inclusions, which is a function of finite bulk strain. Thus, the

final geometry of fissures will be different from those shown

in numerical models.

In the analysis of inclusion–matrix detachment we

intentionally avoid using any failure criterion, as the surface

of detachment is a contact between a rigid solid and a

ductile material. Detachment occurs preferentially along the

interface, which is not exactly similar to rupturing in a

continuous, brittle medium. We have used tensile strength,

which is the stress required to break the adherence between

the two contrasting materials. In natural conditions other

physical factors, e.g. pressure solution, formation of new

mineral phases defining a film at the inclusion–matrix

interface, can control the mechanical condition at the

interface and thereby formation of fissures in the neighbor-

hood of an inclusion.

Experimental findings grossly conform to the results

obtained from theoretical analyses. However, the results

cannot be compared quantitatively. For example, increasing

inclusion concentration promotes formation of extensional

fissures both in theoretical and experimental models. But,

both the magnitude and geometry of fissures show some

dissimilarities. These differences are due to simplistic

considerations in numerical simulations. The opening in

numerical models represent an instantaneous event at the

moment of detachment, where its magnitude is considered

to be proportional to the tensile stress with an arbitrary scale

factor, which is not constrained with experimental con-

ditions. Secondly, their geometry actually represents the

configuration of the fissure at the very initial stage, and this

cannot be compared with the tapered fissures in physical

experiments, which has developed through modification in

the course of progressive deformation. In addition, the

mechanical conditions at the inclusion–matrix interface

could not be maintained perfectly uniform while preparing

an experimental model. This variation resulted in non-

uniform development of fissures along the inclusion–matrix

interface in experimental models. The differences cited

above may also occur due to the difference in matrix

rheology. In theory the matrix is considered to be

Newtonian. On the other hand, the rheology of putty that

we used as the matrix material in physical experiments is

not well constrained. However, it appears to be non-

Newtonian. There was also a difference in three-dimen-

sional geometry of rigid inclusions considered in theory and

experiments. In theory the inclusion are ideally spherical,

whereas in experiments, for convenience, short cylindrical

inclusions were used. It appears, however, that the central

section of a spherical inclusion is nearly equivalent to a

section orthogonal to the long axis of short cylindrical

inclusions. In spite of all these limitations the experiments

are complementary to our principal findings that under the

same conditions, increasing the inclusion concentration

leads to detachment at the inclusion–matrix interface, and

thereby facilitates formation of fissures in the neighborhood

of an inclusion.

The development of fissures in the neighborhood of

rigid objects involves volume adjustment. In natural

conditions opening of fissures is simultaneously filled

with diffusive minerals, such as quartz or calcite. Thus,

positive volume changes due to formation of fissures

can be balanced by negative volume changes in the

matrix, and the bulk deformation may take place under

constant-volume conditions. In our experiments the

volume adjustment probably took place through devel-

opment of surface relief. Theoretical analysis presented

in this paper does not take into account this type of

complex mechanisms required for volume adjustment.

The analysis only explains how instantaneous separation

can take place in response to the stresses at the

inclusion–matrix interface without considering how the

volume generated due to opening is counter-balanced.

Further studies are required to investigate the modes of

volume adjustment around rigid inclusions.

There are some other limitations in the study, which,

however, do not hinder our main proposition on the effect of

inclusion concentration in inclusion–matrix systems. The

analysis is presented considering the effective bulk flow

stress. Evidently, confining pressure will be an additional

parameter in determining the effective traction and thereby

formation of fissures at the inclusion–matrix interfaces.
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5. Conclusions

The principal outcomes of our analysis are concluded

along the following points:

1. In multiple inclusion systems the mechanical interaction

of inclusions influences the inclusion–matrix coherence.

2. The tensile stress at the inclusion–matrix interface is a

non-linear function of inclusion concentration a/b. With

increase in a/b the stress assumes a large value when

a/b . 0.8.

3. Mechanical interaction promotes formation of exten-

sional fissures on either side of individual inclusions. The

instantaneous opening in the fissures is larger for larger

inclusion concentrations.

4. Inclusion–matrix interfaces can remain coherent if their

tensile strength is larger than a critical value, which is a

function of inclusion concentration a/b. For inclusion

concentration a/b , 0.7, the critical tensile strength

increases linearly at a gentle gradient with a/b, whereas

this increases non-linearly with steep gradients when

a/b . 0.7.
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